Text
Visibly Irreducible Polynomials over Finite Fields
Lenstra, in this Monthly, has pointed out that a cubic over F5=Z/5Z of the form (x−a)(x−b)(x−c)+λ(x−d)(x−e), where {a,b,c,d,e} is some permutation of {0,1,2,3,4}, is irreducible because every element of F5 is a root of one summand but not the other. We classify polynomials over finite fields that admit an irreducibility proof with this structure.
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art134602 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain