Text
Evolving Deep Convolutional Neural Networks for Image Classification
Evolutionary paradigms have been successfully applied to neural network designs for two decades. Unfortunately, these methods cannot scale well to the modern deep neural networks due to the complicated architectures and large quantities of connection weights. In this paper, we propose a new method using genetic algorithms for evolving the architectures and connection weight initialization values of a deep convolutional neural network to address image classification problems. In the proposed algorithm, an efficient variable-length gene encoding strategy is designed to represent the different building blocks and the potentially optimal depth in convolutional neural networks. In addition, a new representation scheme is developed for effectively initializing connection weights of deep convolutional neural networks, which is expected to avoid networks getting stuck into local minimum that is typically a major issue in the backward gradient-based optimization. Furthermore, a novel fitness evaluation method is proposed to speed up the heuristic search with substantially less computational resource. The proposed algorithm is examined and compared with 22 existing algorithms on nine widely used image classification tasks, including the state-of-the-art methods. The experimental results demonstrate the remarkable superiority of the proposed algorithm over the state-of-the-art designs in terms of classification error rate and the number of parameters (weights).
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art134909 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain