Text
On p-Groups With Automorphism Groups Related To The Chevalley Group G2(p)
Let p be an odd prime. We construct a p-group P of nilpotency class two, rank seven and exponent p, such that Aut(P) induces NGL(7,p)(G2(p))=Z(GL(7,p))G2(p) on the Frattini quotient P/Φ(P). The constructed group P is the smallest p-group with these properties, having order p14, and when p=3 our construction gives two nonisomorphic p-groups. To show that P satisfies the specified properties, we study the action of G2(q) on the octonion algebra over Fq, for each power q of p, and explore the reducibility of the exterior square of each irreducible seven-dimensional Fq[G2(q)]-module.
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art135300 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain