Text
Distance-Sparsity Transference for Vertices of Corner Polyhedra
We obtain a transference bound for vertices of corner polyhedra that connects two well-established areas of research: proximity and sparsity of solutions to integer programs. In the knapsack scenario, it implies that for any vertex ${x}^*$ of an integer feasible knapsack polytope ${P}({a}, { b})=\{{x} \in {\mathbb R}^n_{\ge 0}: {a}^\top{x}={ b}\}$, ${a}\in {\mathbb Z}^n_{>0}$, there exists an integer point ${z}^*\in {P}({a}, { b})$ such that, denoting by $s$ the size of the support of ${z}^*$ and assuming $s>0$, $ \|{x}^{*}-{z}^{*}\|_{\infty} \,{2^{s-1}}/{s} < \|{a}\|_{\infty}\,, $ where $\|\cdot\|_{\infty}$ stands for the $\ell_{\infty}$-norm. The bound gives an exponential in $s$ improvement on previously known proximity estimates. In addition, for general integer linear programs we obtain a resembling result that connects the minimum absolute nonzero entry of an optimal solution with the size of its support.
Read More: https://epubs.siam.org/doi/abs/10.1137/20M1353228
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art137084 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain