Text
The Landweber Operator Approach to the Split Equality Problem
The split equality problem (SEP) seeks a pair of points $(x^{\ast },y^{\ast })\in (C,D)$ with the property that $Ax^{\ast }=By^{\ast }$, where $C,D$ are nonempty closed convex subsets of Hilbert spaces $\mathcal{H}_{1}$ and $% \mathcal{H}_{2}$, respectively, and $A:\mathcal{H}_{1}\rightarrow \mathcal{H}% _{3}$ and $B:\mathcal{H}_{2}\rightarrow \mathcal{H}_{3}$ are bounded linear operators, where $\mathcal{H}_{3}$ is another Hilbert space. The SEP can equivalently be converted to a split feasibility problem in the product space $\mathcal{H}_{1}\times \mathcal{H}_{2}$. Using this equivalence, we are able to provide a Landweber operator approach to studying the convergence of several iterative methods for finding a solution to the SEP. We also discuss the linear regularity of the Landweber operator associated with the SEP and linear convergence of the iterative methods.
Read More: https://epubs.siam.org/doi/abs/10.1137/20M1337910
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art137101 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain