Text
ReLy : Machine Learning for Ultra-Reliable, Low-Latency Messaging in Industrial Robots
Robotic factory floors are transforming the manufacturing sector by delivering an unprecedented boost to productivity. However, such a paradigm raises questions on safety and coordination, especially when in the presence of unexpected events. Time-critical communication messages for such industrial robots mandate the requirement of ultra-reliable low-latency communication (URLLC). Classical WiFi-connected industrial robots often suffer from the traditional dense network problems prevalent in production WiFi networks, where transmission of an emergency notification packet is “best effort,” devoid of time guarantees. In this work, we propose a machine-learning-based framework called ReLy that intelligently embeds the time-critical messages in the preamble of outgoing frames at the transmitter. These messages are inferred from the channel state information variations at the receiver. As ReLy is implemented entirely at the physical layer, the transmitter is able to deliver information within 5 ms latency and ultra-high reliability of 99 percent. We experimentally demonstrate the feasibility of achieving URLLC with moving robots in a busy workshop with a number of other peer robots, equipment, desks, and robotic arms, as expected in a typical factory setting.
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art137417 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain