Text
A Link Queue Model of Network Traffic Flow
Fundamental to many transportation network studies, traffic flow models can be used to describe traffic dynamics determined by drivers’ car-following, lane-changing, merging, and diverging behaviors. In this study, we develop a deterministic queueing model of network traffic flow, in which traffic on each link is considered as a queue. In the link queue model (LQM), the demand and supply of a link queue are defined in the queue size (number of vehicles), and its in- and out-flows are computed from junction flux functions corresponding to macroscopic merging and diverging rules. The new model is a system of ordinary differential equations that is mathematically tractable and computationally efficient and can capture queue spillbacks and interactions among links. We further demonstrate that the LQM is fundamentally different from the cell transmission model (CTM) and link transmission model (LTM) for a road segment, a signalized ring road, and a diverge-merge network, with respect to the shock and rarefaction waves, network fundamental diagram, and stability property. In a sense, the new model is a space-continuous approximation of the kinematic wave model and can be a useful addition to the multiscale modeling framework of network traffic flow. The model has been applied to formulate and solve network traffic control and observation problems.
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art139236 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain