Text
Optimal Dynamic Appointment Scheduling of Base and Surge Capacity
Problem definition: We study dynamic stochastic appointment scheduling when delaying appointments increases the risk of incurring costly failures, such as readmissions in healthcare or engine failures in preventative maintenance. When near-term base appointment capacity is full, the scheduler faces a trade-off between delaying an appointment at the risk of costly failures versus the additional cost of scheduling the appointment sooner using surge capacity. Academic/practical relevance: Most appointment-scheduling literature in operations focuses on the trade-off between waiting times and utilization. In contrast, we analyze preventative appointment scheduling and its impact on the broader service-supply network when the firm is responsible for service and failure costs. Methodology: We adopt a stochastic dynamic programming (DP) formulation to characterize the optimal scheduling policy and evaluate heuristics. Results: We present sufficient conditions for the optimality of simple policies. When analytical solutions are intractable, we solve the DP numerically and present optimality gaps for several practical policies in a healthcare setting. Managerial implications: Intuitive appointment policies used in practice are robust under moderate capacity utilization, but their optimality gap can quadruple under high load.
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art141652 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain