Text
A Proximal Quasi-Newton Trust-Region Method for Nonsmooth Regularized Optimization
We develop a trust-region method for minimizing the sum of a smooth term (f) and a nonsmooth term (h), both of which can be nonconvex. Each iteration of our method minimizes a possibly nonconvex model of (f + h) in a trust region. The model coincides with (f + h) in value and subdifferential at the center. We establish global convergence to a first-order stationary point when (f) satisfies a smoothness condition that holds, in particular, when it has a Lipschitz-continuous gradient, and (h) is proper and lower semicontinuous. The model of (h) is required to be proper, lower semi-continuous and prox-bounded. Under these weak assumptions, we establish a worst-case (O(1/\epsilon^2)) iteration complexity bound that matches the best known complexity bound of standard trust-region methods for smooth optimization. We detail a special instance, named TR-PG, in which we use a limited-memory quasi-Newton model of (f) and compute a step with the proximal gradient method, resulting in a practical proximal quasi-Newton method. We establish similar convergence properties and complexity bound for a quadratic regularization variant, named R2, and provide an interpretation as a proximal gradient method with adaptive step size for nonconvex problems. R2 may also be used to compute steps inside the trust-region method, resulting in an implementation named TR-R2. We describe our Julia implementations and report numerical results on inverse problems from sparse optimization and signal processing. Both TR-PG and TR-R2 exhibit promising performance and compare favorably with two linesearch proximal quasi-Newton methods based on convex models.
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art142461 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain