Text
Distribution-Free Multisample Tests Based on Optimal Matchings With Applications to Single Cell Genomics
In this article, we propose a nonparametric graphical test based on optimal matching, for assessing the equality of multiple unknown multivariate probability distributions. Our procedure pools the data from the different classes to create a graph based on the minimum non-bipartite matching, and then utilizes the number of edges connecting data points from different classes to examine the closeness between the distributions. The proposed test is exactly distribution-free (the null distribution does not depend on the distribution of the data) and can be efficiently applied to multivariate as well as non-Euclidean data, whenever the inter-point distances are well-defined. We show that the test is universally consistent, and prove a distributional limit theorem for the test statistic under general alternatives. Through simulation studies, we demonstrate its superior performance against other common and well-known multisample tests. The method is applied to single cell transcriptomics data obtained from the peripheral blood, cancer tissue, and tumor-adjacent normal tissue of human subjects with hepatocellular carcinoma and non-small-cell lung cancer. Our method unveils patterns in how biochemical metabolic pathways are altered across immune cells in a cancer setting, depending on the tissue location. All of the methods described herein are implemented in the R package multicross. Supplementary materials for this article are available online.
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art142950 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain