Text
Lie-type Derivations Of Nest Algebras On Banach Spaces And Related Topics
Let $\mathcal {X}$ be a Banach space over the complex field $\mathbb {C}$ and $\mathcal {B(X)}$ be the algebra of all bounded linear operators on $\mathcal {X}$ . Let $\mathcal {N}$ be a nontrivial nest on $\mathcal {X}$ , $\text {Alg}\mathcal {N}$ be the nest algebra associated with $\mathcal {N}$ , and $L\colon \text {Alg}\mathcal {N}\longrightarrow \mathcal {B(X)}$ be a linear mapping. Suppose that $p_n(x_1,x_2,\ldots ,x_n)$ is an $(n-1)\,$ th commutator defined by n indeterminates $x_1, x_2, \ldots , x_n$ . It is shown that L satisfies the rule
$$ \begin{align*}L(p_n(A_1, A_2, \ldots, A_n))=\sum_{k=1}^{n}p_n(A_1, \ldots, A_{k-1}, L(A_k), A_{k+1}, \ldots, A_n) \end{align*} $$
for all $A_1, A_2, \ldots , A_n\in \text {Alg}\mathcal {N}$ if and only if there exist a linear derivation $D\colon \text {Alg}\mathcal {N}\longrightarrow \mathcal {B(X)}$ and a linear mapping $H\colon \text {Alg}\mathcal {N}\longrightarrow \mathbb {C}I$ vanishing on each $(n-1)\,$ th commutator $p_n(A_1,A_2,\ldots , A_n)$ for all $A_1, A_2, \ldots , A_n\in \text {Alg}\mathcal {N}$ such that $L(A)=D(A)+H(A)$ for all $A\in \text {Alg}\mathcal {N}$ . We also propose some related topics for future research.
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art143002 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain