Text
CARAFE++ : Unified Content-Aware ReAssembly of FEatures
Feature reassembly, i.e. feature downsampling and upsampling, is a key operation in a number of modern convolutional network architectures, e.g., residual networks and feature pyramids. Its design is critical for dense prediction tasks such as object detection and semantic/instance segmentation. In this work, we propose unified Content-Aware ReAssembly of FEatures (CARAFE++), a universal, lightweight, and highly effective operator to fulfill this goal. CARAFE++ has several appealing properties: (1) Unlike conventional methods such as pooling and interpolation that only exploit sub-pixel neighborhood, CARAFE++ aggregates contextual information within a large receptive field. (2) Instead of using a fixed kernel for all samples (e.g. convolution and deconvolution), CARAFE++ generates adaptive kernels on-the-fly to enable instance-specific content-aware handling. (3) CARAFE++ introduces little computational overhead and can be readily integrated into modern network architectures. We conduct comprehensive evaluations on standard benchmarks in object detection, instance/semantic segmentation, and image inpainting. CARAFE++ shows consistent and substantial gains on mainstream methods across all the tasks with negligible computational overhead. It shows great potential to serve as a strong building block for modern deep networks.
Barcode | Tipe Koleksi | Nomor Panggil | Lokasi | Status | |
---|---|---|---|---|---|
art143918 | null | Artikel | Gdg9-Lt3 | Tersedia namun tidak untuk dipinjamkan - No Loan |
Tidak tersedia versi lain